N 69 13271
NASA CR 98515

SOURCE REQUIREMENTS FOR THE

*
FLUCTUATION ORIGIN OF COSMIC RADIATION

by

J. R. Wayland

Technical Report No. 889

September 1968

CENTER FOR THEORETICAL PHYSICS
OF THE

DEPARTMENT OF PHYSICS AND ASTRONOMY

UNIVERSITY OF MARYLAND
COLLEGE PARK, MARYLAND



This is a preprint of research carried out at the University
of Maryland. In order to promote the active exchange of research
results, individuals and groups at your institution are encouraged
to send their preprints to

PREPRINT LIBRARY
DEPARTMENT OF PHYSICS AND ASTRONOMY
UNIVERSITY OF MARYLAND
COLLEGE PARK, MARYLAND
20742

U.S.A.



SOURCE REQUIREMENTS FOR THE

FLUCTUATION ORIGIN OF COSMIC RADIATION®

J. R. Wayland

Department of Physics and Astronomy
University of Maryland
College Park, Maryland 20740

September, 1968

* .

This research was supported by the National Aeronautics and Space
Administration under NGL-24662833.
8.1-002-0323



ABSTRACT

We have investigated what conditions are placed upon a source of
cosmic ray particles within a model of the origin of cosmic rays in which
fluctuations in the momentum-changing process are important. This is
done by considering the relationship between <Ap> and <Ap2>; where Ap
is the momentum change in a collision. With the assumption that the energy
due to turbulent motion, cosmic rays, and the magnetic field are linearly
related, we find an expression for the number density of cosmic ray
particles ejected from a changing volume in terms of their average kinetic
energy. We consider this in terms of the fluctuation model to obtain
other source requirements. It is found that over a large range of
astrophysical phenomena the dominance of fluctuation can be important to

the origin of cosmic radiation.
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I. INTRODUCTION

(1)(2)

Recent work has shown that it is possible to explain the

primary cosmic ray spectrum in terms of a process in which statistical

(3)

fluctuations dominate. L. Davis had previously investigated the influence
of fluctuations on the observed spectra. His approach was to consider the
possibilities of statistical fluctuations in the interactions of cosmic

rays with varying galactic magnetic fields., He, however, did not consider
the case of dominating deceleration.

Previously it was thought that fluctuations could not be significant
in the origin of cosmic radiation(s). This evaluation was based upon the
assumption that acceleration processes dominate. If, however, deceleration
effects are more important than acceleration, then we have the case where
fluctuations can explain the high energy spectrum.

We expect the source requirements that such a model would impose to
be dissimilar to those of a model in which acceleration is the prevailing
influence. Accordingly, we have investigated what conditions are placed
upon a source of cosmic rays within the fluctuation origin theory.

In Section II we will outline the theory and give the germane results.
Section III will be devoted to the consequences of assuming that the
;cceleration - deceleration coefficient, a, and the fluctuation coefficient,
b, are related by a = kb, With the assumption that the energy due to
turbulent motion, cosmic rays and the magnetic fields are linearly related
we find an expression for the number density of cosmic ray particles
ejected from changing volume in terms of their average kinetic energy

(Section IV). This result is then considered in terms of the fluctuation

model to check for further source requirements in Section V.



I1. THE FLUCTUATION ORIGIN OF COSMIC RAYS

Let us consider the sudden injection of particles into a region of
moving plasma centers that act as scattering centers. We assume that the
injection is over a short enough time that we can write this as a delta
function. Thus we are also requiring that there is only one injectiom.

By treating this case in detail we can then use our results for all such
injections by a proper averaging procedure. We will also assume that the
particles are all injected with the same momentum, P,- We would obtain
the same type of results for a power law injection in which Py is the
minimum injection momentum and the maximum injection momentum is not a
great deal larger than P,-

The injected particles in the turbulent region (I) will undergo
scatterings that change both their momentum and direction, i.e., they will
diffuse in both space and momentum. We will assume that the spatial diffusion
coefficient, D, is independent of the spatial and momentum coordinates.
[This means that we can not apply our results to the low energy particles
in our solar system, but should apply them to the higher energy 'galactic"
cosmic radiation.] The diffusion in momentum space will be described by
a Markoff process. Thus we have assumed that at each momentum "scattering",
the particle is just at the point of forgetting what has happened in the
last "scattering". In other words, the conditional probability depends
only on the value of the momentum at the time of the previous '"scattering".
The momentum diffusion will then be described by a Fokker-Planck Eqn.

When the particles diffuse to the boundary of the turbulent region
(I) they escape into interstellar space region (II). This escape is caused
mainly by "radiation" across the boundary. Then the flux will be proportional
to the difference of particle densities in the two mediums. We note that

for particles in the turbulent region the particle demsity in interstellar



space can, to a first approximation, be considered to be zero.

In interstellar space, region II, we will assume that the turbulence
is much less than in the turbulent region I. Thus the acceleration will
be small in comparison to that experienced in region I. We will approximate
this by postulating that the particles are no longer experiencing an
acceleration process. The particles will, however, diffuse spatially, as
is indicated by the almost complete isotropy of cosmic radiation. How the
particles will propagate from the source to the point of observation is
still an open question. They may move along kinked magnetic lines of
force. This can result in a streaming or even in what appears to be
diffusion depending upén the characteristics of the magnetic field.
Regardless of the true mode of propagation we will assume the simple case
of diffusion. This will allow us to investigate the effects of fluctuations
in the acceleration process without treating in detail the propagation process.

When the particles reach the boundary of interstellar space (region II)
with intergalactic space we will assume that they freely '"radiate" into
the intergalactic medium. TFor an observer at earth, this boundary is very
far away. We would expect that to a good approximation we can treat region
II as shperical. In this model the density of cosmic rays in intergalactic
space is much smaller than the density in interstellar space. This will
impose the condition that the particle density, 1n, should decrease as one
approaches this boundary (and we will assume that it appraoches zero).

To give an example of this type of model consider the explosion of a
supernovae. As long as the particles are accelerated dominately within
the expanding volume of turbulent ejecta we can apply this model. It may
also be possible that there are reoccuring implosions that will act as
injection sources(é).

The problem is solved for a time-dependent state. However, the cosmic



ray intensity appears to be constant with time. Thus we can use the
relatively easily obtained time dependent solution and integrate it over all
past time to find its total contribution to the present. In a forthcoming
paper we will discuss this point in greater detail.
The problem can be written as
oM,

IM _pp2 S
(1) DVM+&P

éx_ (] I/

<Ap> J 4")2> + ”l, - 0
') 2 o a7 i

for t > t0 in region I and

Y2

for t > t in region II. Here n is the particle density, D is the diffusion
coefficient, <AP> and <AP2> the first and second moments of the momentum
changing process, and T is the effective lifetime against removal by inter-
action processes within the medium. At the boundary of region I and II,

r=a_,we require

IM,
(3) T/; = A(M, -'Ma.);

D 9 ngmz

(4) Y I D

and at the boundary of region II (interstellar space) with intergalactic

space, r = R,

(5) My => 0,



Note that h determines the confinement conditions of particles in region I.
As h > 0 we have the case of free escape across the boundary, and as h » «
we have éomplete confinement, i.e., there is no flux across the boundary.

The initial condition at time t = to is
©  m =g, S(x-L) S(p-p) St —éo),

where r  is the radius of the "point" source. (We will consider the case

where r, > 0.) If we assume that

(7 (-%%} = 4@,

and
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we find that the solution in region II is given by (see appendix)
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This is an asymptotic solution that is valid when ln(P/Po) > 1.

Note that we can write Equation (9) in the form
P Y
- cﬂdmi 2 1.
(10) %:. - (P)

When one applies this to the primary cosmic ray spectrum, it is
found that only when there is a steady decrease in the mean statistical
momentum change, <AP>, can one fit the observed spectrum. Then
deceleration is dominating over acceleration. The particles that are
observed at very high energies are the result of a series of favorable
acceleration scatterings. This is just the result of fluctuations in
the acceleration process. But what are the conditions under which we
can expect this type of model to apply? We will investigate this question

in the next sections.



ITI. SOURCE REQUIREMENTS FROM a = kb

If we assume that a = kb, we can obtain the observed primary cosmic
ray spectrum. We can vary k and Po in the fitting procedure for the
correct slope of the power law momentum spectrum. As one would eﬁpect,
there is a coupling between k and Po' This is illustrated by the fact that
for Po = 0,1 GeV/c, k = -0.28 pa 0.02, for Po = 1.0 GeV/c; k = -0.32 ¥ 0.02;
and for Po = 10.0 GeV/c, k = -0.37 t .02, ete. We note that as Po varies
over a rather large range that k remains at about -0.3 or —0.4; Let us,
for the present, disregard Po and investigate what conditions we can
place upon the source by the requirement of a = kb.

(2)

We have shown in a previous paper that one can write for the first

and second moment

=2
28,4 _ 1BeAB

g =2 _ 2Be 7
(11) Ata = 3 B z- T T 3R °’
2 = ¢ —2
EL A — §Z£3e,2 Eg -+ j£ fg
(12) At b = —"Rz R 3 )

where Ez‘—"- BZ-'F(,\V/)ANV

In the above expressions Be = V = velocity of the scattering centers,
£(V) = velocity distribution of the scattering centers, Bec = Ve = velocity
of expansion, R = radius of expansion, and A = mean free path between

scatterings. We have assumed that the scattering centers are receding



from each other as the result of spherical expansions from a common
center. The amount of momentum change at each scattering is calculated
from Fermi theory. It is also assumed that the scattering is essentially
isotropic. Terms of order greater than B3 have been ignored.

If we include Equations (11) and (12) in a = kb and solve for B

we find Y,
b B. 1 2
_ 2+ 7B

#R -
2y (2-k)+ 2(1+2k)

-

W
|

(13)

It is very troublesome to attempt to estimate A. However, we can
give a physical meaning to the ratio R/} under suitable conditions.
If the mean size of the scattering centers is approximately equal to
the distance between centers, we note that

N.*= number of scattering centers,

Even if the radius of the scattering centers, Rsc’ is A/10, then Nsc
103 (R/A)B. We can plot B as a function of R/A for various Be at a
fixed k. The results for k = -0.30 and RSC = A are shown in Fig, I.
Note that for a fixed Be as the number of scattering centers
increases the average velocity of the scattering centers decreases. This
is what one would expect, as there would then be more of a chance for
scattering, and hence for fluctuations to occur. Also note that for a
fixed R/)A the required B increases for increasing Be. One can

understand this by remembering that in our case deceleration is dominant.



The larger the expansion rate, i.e., Be, the more efficient is the
deceleration, and hence the larger B must be to allow for the few favorable
sequences of scatterings that give rise to the fluctuations. When RSc < A
the conditions for fluctuations are increased because the number of
scattering centers are increased.

To what astrophysical phenomena can we apply these considerations?
Almost any ionized gas that is in a turbulent state apppears to be able
to produce energetic particles, TIf there is a reason for deceleration to
dominate over acceleration, one can perhaps have the fluctuations
required. One of the simpler cases is that of a region undergoing
expansion. This is not the only case, but it is common. As an example,
consider novae and supernovae, Here Be is about 3 x 10_3 and 2 k 10_2
reSpectively(ﬁ). Then for RSc * A/10 and Nsc = 109 this implies that

3

B is 10 ~ to 10~2’ a reasonable requirement.
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IV. THE RELATION BETWEEN THE AVERAGE KINETIC ENERGY OF PARTICLES

EJECTED FROM A TURBULENT REGION AND THE TOTAL ENERGY.

One of the more surprising results of the application of the
equipartition of energy is the prediction of the cosmic ray spectrum in

) |

the form of a power law by Syrovatsky Later this work was extended
to include a dependence upon a changing volume by Satﬁcgl. In both of
these works, the assumption is made that the average kinetic energy of the
particles can be replaced by its total energy. This is a rather
problematical step. Below, we will obtain the number of particles ejected
as a function of its average kinetic energy without assuming the equi-
partition of energy. We will not assume that we can replace the average
kinetic energy by an energy, but will compare the average kinetic energy
with results from the fluctuation origin of cosmic rays to try to obtain
information about conditions imposed upon the source and the turbulent
region.

We will consider high-energy cosmic rays which are produced within
a region of turbulent motion of a magnetized plasma. The energy within
the region will have terms from thermal motion, turbulent motion, magnetic
field, cosmic ray particles, radioactive nuclei, etc. We shall assume that
the only modes to offer significant contribution to the total energy

are the turbulent motion, the magnetic field and the cosmic ray particles.

" Then we can write
(15) E = Em. t E/mg. t B, .

We also note that the cosmic ray radiation from the region is given by
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— AE dv
(16) -I.. = 7% P

where P is the total pressure.

When the particles are ejected we will assume that

(172) Eturb T Ecr
(17b) Emag ) Ecr

so that we can write

(18) E= (1 + a; + az) E, = 1+ al + az) TN,

where T is the average kinetic energy per particle and No is the
total number of particles. We note that
— —— O(A/o
19 — = _—
(19) —Lc«: T Ax¥
In the above model of the fluctuation origin of cosmic rays, it is
assumed that particles are decelerated. One way of doing this is to allow

for a changing volume. Let us then take
(20) E = constant V%

With the aid of Equation (20), we can combine Equations (16), (18)
and (19) to find
\ oléiu.
— JdN, _ e )
ey T A;Ha 3 U"'d'*az)(""/&%) A+’
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. .th
where By = PiV/Ei and Pi = —(dEi/dv)s.= partial pressure of the i mode

(F =é§ B: ). Recalling that E = ‘fNo, we can solve Equation (21)

to obtain

- =0
(22) N, =k T

b

where = (l+4;*dz.) (I+ é)
v (14 a,+G,)E  +4, +4,

¥

] l

l+;<:'

"
M

A+A, + (1+a,+a,_)/%
(6)

Satd shows that 8 = 4/9.

Within the framework of our model, we need to know how T, E and V
are changing with time. To do this, we must find T, E and V as a

function of NO and q. A little algebra gives
~ #(i1+a,+a;) + ?(4,1—4:)4,
o~ (1+aq,+a

T4
(24) Ex N ¢ IM.*%)(‘]?H)

9
(25) Ve M (:+a,+a,,)(‘?qf+4)

If we indicate that a quantity is increasing by 4+ and decreasing

by + we can make the following table:
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q S i ~4/9 0
9(ai+a2) ]

T 4 ¥ 4

E ¥ A ! 4

v 4 ¥

Table I: The Time Variation of T, E and V.
In the fluctuation origin of cosmic rays we require that V is increasing
(i.e., q < -4/9), and that E and T are decreasing. This last condition

is the result of deceleration dominating. Then we have that

_4(l+ta,+a,) < < ~%.
Q(ﬂ,+az) 4' 7
If we have equipartition of energy, i.e., a; =a, = 1, then -2/3 < gq< -4/9.
However, if a >> 1 and a * 1, q is restricted to a value very

1 or 2 2orl

close to ~-4/9. This places severe restrictions upon the fluctuation model.

If a or 2 0 and a r1- 1, then
g <-—j
q
and we have a wider range on q. In the case of a =0 and a << 1

lor 2 2orl
there is an even wider range on q. We note that if we have either the
turbulent or the magnetic energy dominating, that the probability of
cosmic ray particles' being produced forces very restrictive requirements
upon a source. Whereas if either the turbulent or magnetic mode is
absent, the range of q becomes much greater. We can from the above

analysis, write

dV _ Ltiva+a,)V HE
(26) AF _a,( e
g E At
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As an approximation, set E = 1/2 mv2 wh .
PP ’ turb / mVy arh® ere m is the mass of the

turbulent medium and ;turb is the average velocity of the turbulent

centers. Note that vturb/c = B. Here dv/dt > 0 and dEturb/dt < 0,
which implies that q < 0. Also, we must have turbulent motion as ay # 0.

Combining Equation (26) with dV/dt = 4nR2cBe we find

o g R TATEIVEN A
(27) ﬁL 4 f?z fi: ;{jf

. . . . 2
As an example, if we consider a supernova remnant with dv /dt -.1 cm/sec”,

turb
- ~ I R ~2 - 50 .
R~ 1L.y., m .]M@ s Be 10 7, B 10 7 and W~ 107" ergs, we find that

-q ~ 0 (1). This very crude estimate shows that our values of q are

within reason.
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V. SOURCE REQUIREMENTS FROM N_ = klf""l

We will investigate what source requirements result from combining

the results of Sections II and IV. If we use Equation (10) we find that

é P, ¥-1

’ ] o

(28) /Va = -(-;:7) P )
V-1

K, .@.) ®..
(29) {e> = (Y-2) (‘p’"‘ J

|
:w—YJ %

(30) <E>

Y-/ 2(1-¥) /P
2 Po>F (v.z)‘m‘(ﬁ) ..”"._%i)(;
o <T>*q% ( ~ ,4 TP\ 8 k, G 1Om

where k2 is a constant, Pm is the minimum momentum considered and <P>,
<E>, <T> are the average momentum, total energy and kinetic energy of all
cosmic ray particles, respectively, and m is the maas of the particle
considered. We know that T - <T>/No which, when combined with

N, =k T %1, can be written as

oy, XKa
(32) <T> = M é )
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where a3 =al az.

If we insert Equations (28) and (31) into Equation (32) and
rearrange, we obtain an equation for ¥y

XTLIB _ /%3‘k - Afg = Cb

(33)

g = ¥-2
o, LA

where /?z z oy mz(
ROES o

Thus we have an equation for y as a function of the experimental

—{x4))

“2(%+1) 7 %
_z_/mx (9_3.
ko, G \ E

\

;00D

parameters kl, kz, Po’ Pm’ al, ay, m. We can simplify this by noting

that
4 —(x+1)
— ¥ e
o=k, L 'p‘)
(34) ' (x+1) -

The parameter k2 can be found from the observed spectrum of cosmic rays.

We will use the results quoted by Webber.(7)

Equation (33) is then
solved numerically by a modified Newton-Ralphson method for various
fixed values of Po’ Pm’ ay and e Some representative results are
shown in Figs. II to VII. (Here we have assumed m is the mass of the
proton;)

The value of y varies between 2 and 3, increasing with increasing

momentum in the primary cosmic ray spectrum.(z) The average kinetic
energy of cosmic ray particles is of the order of unity;(4) Let us
consider 5 cases: (1) where equipartition of energy exists (a1 =a, = 1);

(2) where the turbulent (magnetic) energy is twice the cosmic ray
energy and the magnetic (turbulent) and cosmic ray energies are the

same (a 2, 1); (3) where E 10 E  and

1 or 9 = 8 or 1 turb (mag.) = cr
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( = 10, a 1= 1); (4) where E

al or 2 2 or

30,

turb. (mag.) -
1); (5) where

Emag. (turb.) Ecr

30 Ecr and Emag.(turb.)=Ecr (al or 2

Eturb. = 0.1 Ecr and Eturb. = Emag. (al or 2 %20r1

a2 or 1 =
= 0.1). This,

of course, does not exhaust all of the possibilities. However, it will
be sufficient to outline the main characteristics of the source requirements
that we seek.

The results of solving Equation (33) for each case are shown in
Figs. II, III, IV, V and VI. We have not shown roots that are less than
2. A number of general features can be seen from an inspection of
these results. We first note that generally when P0 = Pm = 0.1 GeV/c the
values of y are too low to be of any real contribution. It is only when
Po ~ 1 GeV/c or greater that acceptable roots appear. However if we go
much above 5 GeV/c the values of y are rather large. Note that it is
possible to find the same curve at different values of q by a suitable
choice of Po and Pm (see curve IV, Fig II). The greater the value of
[ql, the stronger is the volume expansion, and hence the deceleration.
This seems to i@ply that a "balance" of P> the injection momentum, against
the deceleration is necessary. As we increase the energy in the turbulent
(or magnetic) mode over the other two modes, we find that there is a
greater variation of y with a smaller Po change. One'would expect this
if the turbﬁlent region were trying to establish an equipartition of
energy. On the other extreme, when the cosmic ray mode overpowers the
other two modes (Fig. VI), we find that it is wvery difficult to obtain
the necessary range of vy.

The average energy of cosmic ray particles measured at the earth is

(4)

about 7 GeV. If one inspects Figs. II, III, IV, V and VI at' T of 6

or 7 GeV, the above remarks are more easily grasped.
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Let us consider a particle of m = 50 GeV/c2 and Z = 25. When
we solve Equation (33), we obtain the results shown in Fig. VII. The
main differences from the previous results are that Po must increase
into the hundreds of GeV/c range (with P71 Gev/c), and that |q]
must be larger than before. The increase in P, is probably due to the
22 dependence of dE/dx. The larger value of lql implies that only the
more rapid expansion is effective in producing the required fluctuations.

Application of the above methods to different values of m give the same

conclusions.
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VI. Discussion and Conclusion

We have given a condensed account of the fluctuation origin of cosmic
radiation. The pertinent results have been considered to find what require-
ments are placed upon the model. The assumption that the acceleration
moment, a, is really dominated by deceleration, and hence is negative,
implies that fluctuations may play a very important part in the origin
of cosmic radiation. The requirement that a = constant b, where b is the
fluctuation moment in the momentum changing processes, allows us to place
certain restrictions upon the turbulent region in which cosmic ray
particles experience acceleration and deceleration. We found that,

a) for a fixed expansion velocity of the turbulent region, that

the number of scattering centers required decreases as the average
velocity of the scattering centers increases;

b) for a fixed number of scattering centers, the required average
velocity of the scattering centers increases for increasing
expansion velocity within fhe turbulent region.

The condition stated in a) is rather self-evident. The statement b) is
a manifestation of the dominance of deceleration over an acceleration
process. This gives rise to the importance of fluctuations. We point
out that one can apply this requirement to any turbulent region in which
deceleration is stronger than acceleration. It is then shown that this
could be true in novae and supernovae shells.

We have shown that it is possible to obtain a power-law dependence
upon the average kinetic emnergy for the number of particles ejected from
a turbulent region. The restrictions imposed by the need for dominance

of fluctuations places restrictions upon the rate at which the volume
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is changing. In particular, when the total energy, E, is related to

volume, V, by

E-:WMV%

we find that _ 71(,_,,4).,.4?_) < i, < - % ,
9 (41 ‘l"az.)
where Eturb. =a; Ecr and Emag. = a, Ecr' If one compares the expression

for the total number of particles as a function of the average kinetic
energy with the results from the fluctuation origin, it is possible to
obtain further information about source requirements. We found that;
a) when one considers protons, that the injection momentum, Po,
is normally bounded by .1 GeV/c < P0 < approximately 5GeV/cj
b) as greater energy is put into the turbulent or magnetic mode at
the expense of the other two modes, that the chance for
fluctuation origin to occur increases¥*;
¢) if the cosmic ray mode has much more energy than the other
two modes, that a fluctuation ofigin becomes unlikely.

d) the value of Po for heavier particles goes approximately as Zz.
Much of the above analysis assumes that the turbulent region is
expanding. There are many occurences in astronomigal phenomena where this
is true. We would like to point out that this is not the only case where the

fluctuation origin of cosmic rays may apply. The main assumption is that

deceleration is stronger than acceleration in the turbulent region.

*This is true in the sense of a wider variation of v (at a fixed T) for

a smaller change in Po'



APPENDIX

We expect a power law solution in p.

20a

This suggests that we take the

Mellin transform with respect to p of Eqn. (1) after first inserting Eqns

(7) and (8). We find that

24
IH

(A1)

~ D, yzg‘ '~E(5"/)a +(s-0)(s-2)6 -—_’L,‘_] j’

where

I =(?S-‘m‘(f)£)})¢€¢?'

If we write gl(s,,/v?,t) =J(( Q,s,t) h(s,t) we can obtain

J £ 2 .
— - D = -5
“2) ok VO S )
oh _ _ 2
ORI Y h,
where
1 ‘(; — _ _ _ l/ .
(A4) oL fR [(s Na + (s-1J(s 2)L]+ T

The solution to Eqn. (A3) is

(AS)

p-eo P

2
Let 3(= v(f,t) e ¢ t; then we find

Y

Y2 - p Vg =0
Q_X‘ i -

(46)

"
Q<
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As we noted above, for particles in region I, the boundary condition is

given by

c)/V"' A/"'-'O.
w5

(10)

The solution for v is

_ Dl ¥

oo 2 2 .
__?_”_d_j‘ii Z (Ah-1) 4 De®as 45 o Bt 20 ©

(48) W s, M 70{:-(-4,4(4,/1—1)

¥

where o are the positive roots of

(49) 4 & CoX o +(4.h-1) =o0.

We will want (Ash - 1) to be large enough for a reasonable confinement
time to allow for acceleration and fluctuation processes. If we then
allow r, + 0 (i.e., become a point source) and only consider the fundamental

mode (n = 1; the exponental term allows this without introducing a serious

error),
51 -9.40
§o Po . 3ir 6 *a';‘" j-
Al0 A = A
(A10) ‘ 247 a
Thus we find that
D
) NAIYUE SR A L
, 030 5 . ?;!-{z 5 (0( 1’/8 asl
e T WA a5

The solution for 8, is given by
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(A12) ﬁl =

where

2 [

i

L 9 A -
(A13) ao + o - Dz7-z'

When we apply the boundary conditions we have
s-) —
/559,08 _(’—.4_5)/2-4)—«‘ A -
(A14) az = ‘___—_ii;__i W[ a, D, ( kg ( 178)
h a; »

The inverse Mellin transformation can be approximated by the method of

steepest descent. This gives the asymptotic solution

[ &g

(Al5) m, = L A,
h R a’r P

where A o= -5 b (€/R) +[’(>:,~1Ja+(50~1)C5‘.—2J‘=]f
D, 96Dl
(xR ) (a-a) - AL

]

and

L 3b-a

The time average solution can be found by Laplace integration. The

asympotic solution is Eqn. (9).

_,ﬂf].
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FIGURE CAPTIONS

The variation of B with the number of scattering centers at
various values of Be. Similar results hold for different
values of k.

The variation of y with T for different Po and Pm for a_ =a_=1.

The variation of y with T for different Po and Pm for a. =2, a.=1.
The variation of y with T for different Po and Pm for a,=10, a,=1.
The variation of y with T for different Po and Pm for a1=30, a,=1.
The variation of y with T for different Po and Pm for

The variation of y with T for different Po and Pm for a.=a, =1 and
m = 50 GeV/c2.
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